23.04.2014 05:05 Uhr in Gesundheit & Wellness von Max-Planck-Institut für Neurobiologie
Synapsen – Beständigkeit im Wandel
Kurzfassung: Synapsen - Beständigkeit im WandelAlles ist vergänglich. Das gilt auch für die Proteine, die Bausteine, aus denen die Kontaktstellen zwischen unseren Nervenzellen bestehen. Dank dieser Proteine kö ...
[Max-Planck-Institut für Neurobiologie - 23.04.2014] Synapsen - Beständigkeit im Wandel
Alles ist vergänglich. Das gilt auch für die Proteine, die Bausteine, aus denen die Kontaktstellen zwischen unseren Nervenzellen bestehen. Dank dieser Proteine können an einer Synapse ankommende Informationen verpackt und von der nächsten Nervenzelle auch aufgenommen werden. Lernen wir etwas Neues, dann werden neue Synapsen aufgebaut oder bestehende verstärkt. Für dauerhafte Erinnerungen müssen Synapsen über längere Zeiträume, bis hin zu einem ganzen Leben, stabil bleiben. Wie eine Synapse durchgehend stabil bleiben kann, obwohl ihre Proteine regelmäßig erneuert werden müssen, darauf haben Forscher des Max-Planck-Instituts für Neurobiologie in Martinsried bei München nun einen Hinweis gefunden.
Lernen in der Zellkultur
"Uns hat zunächst einmal interessiert, was mit den verschiedenen Komponenten einer Synapse passiert, wenn sie während des Lernens wächst, berichtet Volker Scheuss, der Leiter der Studie. Ein Verständnis des Komponentenwachstums könnte auch Auskunft über die langfristige Stabilität von Synapsen geben. So untersuchten die Forscher in Kulturschalen das Wachstum von Synapsen nach einem (Lern)Reiz. Dazu aktivierten sie einzelne Synapsen gezielt mit dem Botenstoff Glutamat. Schon seit längerem ist bekannt, dass Glutamat bei Lernvorgängen eine wichtige Rolle spielt und das Wachstum von Synapsen anregt. In den folgenden Stunden beobachteten die Forscher die stimulierten und Kontroll-Synapsen unter dem Zwei-Photonen-Mikroskop. Zur Bestätigung der beobachteten Effekte untersuchten sie im Anschluss einzelne Synapsen noch mit Hilfe des Elektronenmikroskops. "Das war eine ziemliche Sisyphus-Arbeit, wenn man bedenkt, dass eine einzelne Synapse gerade mal einen 1000stel Millimeter groß ist, erzählt Tobias Bonhoeffer, in dessen Abteilung die Untersuchungen stattfanden.
Nur gemeinsam stabil
Die Wissenschaftler fanden heraus, dass beim Synapsenwachstum die verschiedenen Proteinstrukturen immer im passenden Verhältnis zueinander wuchsen. Wuchs oder vermehrte sich nur eine Strukturkomponente allein, oder im falschen Verhältnis zu den anderen, so kollabierten diese Veränderung bald darauf wieder. Mit solch unvollständigen Änderungen können Synapsen keine langfristigen Erinnerungen speichern.
Die Ergebnisse zeigen, dass es eine fein aufeinander abgestimmte Ordnung und Interaktion der Synapsenkomponenten gibt. "In solch einem System sollte es gut möglich sein, individuelle Proteine auszutauschen, während der Rest der Struktur die Stellung hält, so Scheuss. Bricht jedoch eine ganze Komponentengruppe weg, so wird die ganze Synapse destabilisiert. Auch das ist ein wichtiger Vorgang, denn ohne die Möglichkeit zu vergessen könnte das Gehirn nicht richtig funktionieren. Die Ergebnisse liefern somit nicht nur einen wichtigen Einblick in die Funktion und den Aufbau von Synapsen. Sie dienen auch als Grundlage um Gedächtnisverlust zum Beispiel bei degenerativen Erkrankungen besser zu verstehen.
Originalpublikation
Balance and stability of synaptic structures during synaptic plasticity
Daniel Meyer, Tobias Bonhoeffer, Volker Scheuss
Neuron, 16. April 2014
Kontakt
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-Mail: merker@neuro.mpg.de
www.neuro.mpg.de
Dr. Volker Scheuss
Abteilung Synapsen - Schaltkreise - Plastizität
Max-Planck-Institut für Neurobiologie, Martinsried
Email: scheuss@neuro.mpg.de
Prof. Dr. Tobias Bonhoeffer
Abteilung Synapsen - Schaltkreise - Plastizität
Max-Planck-Institut für Neurobiologie, Martinsried
Email: tobias.bonhoeffer@neuro.mpg.de
Alles ist vergänglich. Das gilt auch für die Proteine, die Bausteine, aus denen die Kontaktstellen zwischen unseren Nervenzellen bestehen. Dank dieser Proteine können an einer Synapse ankommende Informationen verpackt und von der nächsten Nervenzelle auch aufgenommen werden. Lernen wir etwas Neues, dann werden neue Synapsen aufgebaut oder bestehende verstärkt. Für dauerhafte Erinnerungen müssen Synapsen über längere Zeiträume, bis hin zu einem ganzen Leben, stabil bleiben. Wie eine Synapse durchgehend stabil bleiben kann, obwohl ihre Proteine regelmäßig erneuert werden müssen, darauf haben Forscher des Max-Planck-Instituts für Neurobiologie in Martinsried bei München nun einen Hinweis gefunden.
Lernen in der Zellkultur
"Uns hat zunächst einmal interessiert, was mit den verschiedenen Komponenten einer Synapse passiert, wenn sie während des Lernens wächst, berichtet Volker Scheuss, der Leiter der Studie. Ein Verständnis des Komponentenwachstums könnte auch Auskunft über die langfristige Stabilität von Synapsen geben. So untersuchten die Forscher in Kulturschalen das Wachstum von Synapsen nach einem (Lern)Reiz. Dazu aktivierten sie einzelne Synapsen gezielt mit dem Botenstoff Glutamat. Schon seit längerem ist bekannt, dass Glutamat bei Lernvorgängen eine wichtige Rolle spielt und das Wachstum von Synapsen anregt. In den folgenden Stunden beobachteten die Forscher die stimulierten und Kontroll-Synapsen unter dem Zwei-Photonen-Mikroskop. Zur Bestätigung der beobachteten Effekte untersuchten sie im Anschluss einzelne Synapsen noch mit Hilfe des Elektronenmikroskops. "Das war eine ziemliche Sisyphus-Arbeit, wenn man bedenkt, dass eine einzelne Synapse gerade mal einen 1000stel Millimeter groß ist, erzählt Tobias Bonhoeffer, in dessen Abteilung die Untersuchungen stattfanden.
Nur gemeinsam stabil
Die Wissenschaftler fanden heraus, dass beim Synapsenwachstum die verschiedenen Proteinstrukturen immer im passenden Verhältnis zueinander wuchsen. Wuchs oder vermehrte sich nur eine Strukturkomponente allein, oder im falschen Verhältnis zu den anderen, so kollabierten diese Veränderung bald darauf wieder. Mit solch unvollständigen Änderungen können Synapsen keine langfristigen Erinnerungen speichern.
Die Ergebnisse zeigen, dass es eine fein aufeinander abgestimmte Ordnung und Interaktion der Synapsenkomponenten gibt. "In solch einem System sollte es gut möglich sein, individuelle Proteine auszutauschen, während der Rest der Struktur die Stellung hält, so Scheuss. Bricht jedoch eine ganze Komponentengruppe weg, so wird die ganze Synapse destabilisiert. Auch das ist ein wichtiger Vorgang, denn ohne die Möglichkeit zu vergessen könnte das Gehirn nicht richtig funktionieren. Die Ergebnisse liefern somit nicht nur einen wichtigen Einblick in die Funktion und den Aufbau von Synapsen. Sie dienen auch als Grundlage um Gedächtnisverlust zum Beispiel bei degenerativen Erkrankungen besser zu verstehen.
Originalpublikation
Balance and stability of synaptic structures during synaptic plasticity
Daniel Meyer, Tobias Bonhoeffer, Volker Scheuss
Neuron, 16. April 2014
Kontakt
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-Mail: merker@neuro.mpg.de
www.neuro.mpg.de
Dr. Volker Scheuss
Abteilung Synapsen - Schaltkreise - Plastizität
Max-Planck-Institut für Neurobiologie, Martinsried
Email: scheuss@neuro.mpg.de
Prof. Dr. Tobias Bonhoeffer
Abteilung Synapsen - Schaltkreise - Plastizität
Max-Planck-Institut für Neurobiologie, Martinsried
Email: tobias.bonhoeffer@neuro.mpg.de
Weitere Informationen
Weitere Meldungen dieses Unternehmens
23.04.2014 Synapsen – Beständigkeit im Wandel
07.04.2014 Warum Fische beim Schwimmen nicht abdriften
18.02.2014 Neue Leuchten für die Forschung
Pressefach abonnieren
via RSS-Feed abonnieren
via E-Mail abonnieren
Pressekontakt
Max-Planck-Institut für Neurobiologie
82152 Martinsried
Deutschland
Drucken
Weiterempfehlen
PDF
Schlagworte
Max-Planck-Institut für Neurobiologie
82152 Martinsried
Deutschland
https://www.prmaximus.de/pressefach/max-planck-institut-für-neurobiologie-pressefach.html
Die Pressemeldung "Synapsen – Beständigkeit im Wandel" unterliegt dem Urheberrecht.
Jegliche Verwendung dieses Textes, auch auszugsweise, erfordert die vorherige schriftliche Erlaubnis des Autors.
Autor der Pressemeldung "Synapsen – Beständigkeit im Wandel" ist Max-Planck-Institut für Neurobiologie, vertreten durch .