18.12.2014 17:00 Uhr in Energie & Umwelt von Christian-Albrechts-Universität zu Kiel
Was passiert in 100 Billiardstel Sekunden?
Kurzfassung: Was passiert in 100 Billiardstel Sekunden?Physikerinnen und Physiker können bald mit ultraschnellen Röntgenkameras filmen, wie sich die Elektronen im Inneren von Materialien verhalten. Die neue Tech ...
[Christian-Albrechts-Universität zu Kiel - 18.12.2014] Was passiert in 100 Billiardstel Sekunden?
Physikerinnen und Physiker können bald mit ultraschnellen Röntgenkameras filmen, wie sich die Elektronen im Inneren von Materialien verhalten. Die neue Technik stammt von Forschenden verschiedener japanischer Institute und der Christian-Albrechts-Universität zu Kiel (CAU). Am zurzeit modernsten Röntgen-Freie-Elektronen-Laser der Welt am RIKEN-Institut, Japan, erzielten sie damit tiefere Einblicke als jemals zuvor auf den kürzesten Zeitskalen.
Die Wissenschaftlerinnen und Wissenschaftler erhoffen sich dadurch ein besseres Verständnis von Materialeigenschaften. Außerdem können sie mit der neuen Methode verfolgen, wie Elektronen in elektronischen Bauteilen während des Betriebs agieren. "Das sind grundlegende Prozesse, die in wenigen Femtosekunden, also Billiardstel Sekunden, ablaufen", erklären Privatdozent Dr. Kai Rossnagel und Doktorand Lars-Philip Oloff von der Kieler Universität.
Möglich machen die Messungen extrem kurze Blitze aus hochenergetischem Röntgenlicht, sogenannter harter Röntgenstrahlung, die momentan nur in zwei Forschungsinstituten in Japan und den USA erzeugt werden kann. Rossnagel und Oloff und ihre japanischen Kolleginnen und Kollegen nutzten die Strahlung, um die sehr leistungsfähige Technik der Photoelektronenspektroskopie weiterzuentwickeln. Bei dieser Methode sendet ein optischer Laser einen ultrakurzen Lichtpuls aus, der Elektronen in festen Materialien anregt. Ein zweiter zeitversetzter Röntgenpuls schlägt die sogenannten Photoelektronen aus dem Material. Aus ihrer gemessenen Geschwindigkeit lässt sich dann zum Beispiel die Energie und die Dynamik der Elektronen im Festkörper bestimmen.
Bisher war das nur mit ultravioletter oder weicher Röntgenstrahlung möglich, so dass insbesondere die tief im Inneren und stark an die Atome des Festkörpers gebundenen Elektronen nicht zugänglich waren. Diese geben aber gerade Auskunft über die chemische Zusammensetzung von Materialien oder helfen bei der Bestimmung von magnetischen Eigenschaften. "Mit unserer Technik, die hartes Röntgenlicht einsetzt, können wir bis zu zehn Mal tiefer in Festkörper hineinsehen und schnellere Abläufe beobachten als zuvor", sagt Rossnagel. Auf der Suche nach neuartigen Materialien und schnelleren Bauelementen bringe die neue Analysemethode die Forschenden einen großen Schritt weiter. In den kommenden Jahren wollen Rossnagel und seine Mitarbeitenden diese am zurzeit noch im Bau befindlichen Röntgen-Freie-Elektronen-Laser in Hamburg, der dann neue Maßstäbe setzen wird, weiter verfeinern.
Originalpublikation:
Time-resolved HAXPES at SACLA: probe and pump pulse-induced space-charge effects. Lars-Philip Oloff, Masaki Oura, Kai Rossnagel, Ashish Chainani, Masaharu Matsunami, Ritsuko Eguchi, Takayuki Kiss, Yasuhiro Nakatani, Takashi Yamaguchi, Jun Miyawaki, Munetaka Taguchi, Kohei Yamagami, Tadashi Togashi, Tetsuo Katayama, Kanade Ogawa, Makina Yabashi, and Tetsuya Ishikawa. New Journal of Physics 16, 123045 (2014). doi: 10.1088/1367-2630/16/12/123045
Christian-Albrechts-Universität zu Kiel
Christian-Albrechts-Platz 4
24118 Kiel
Telefon: +49 (0431) 880-00
Telefax: +49 (0431) 880-2072
Mail: mail@uni-kiel.de
URL: http://www.uni-kiel.de/
Physikerinnen und Physiker können bald mit ultraschnellen Röntgenkameras filmen, wie sich die Elektronen im Inneren von Materialien verhalten. Die neue Technik stammt von Forschenden verschiedener japanischer Institute und der Christian-Albrechts-Universität zu Kiel (CAU). Am zurzeit modernsten Röntgen-Freie-Elektronen-Laser der Welt am RIKEN-Institut, Japan, erzielten sie damit tiefere Einblicke als jemals zuvor auf den kürzesten Zeitskalen.
Die Wissenschaftlerinnen und Wissenschaftler erhoffen sich dadurch ein besseres Verständnis von Materialeigenschaften. Außerdem können sie mit der neuen Methode verfolgen, wie Elektronen in elektronischen Bauteilen während des Betriebs agieren. "Das sind grundlegende Prozesse, die in wenigen Femtosekunden, also Billiardstel Sekunden, ablaufen", erklären Privatdozent Dr. Kai Rossnagel und Doktorand Lars-Philip Oloff von der Kieler Universität.
Möglich machen die Messungen extrem kurze Blitze aus hochenergetischem Röntgenlicht, sogenannter harter Röntgenstrahlung, die momentan nur in zwei Forschungsinstituten in Japan und den USA erzeugt werden kann. Rossnagel und Oloff und ihre japanischen Kolleginnen und Kollegen nutzten die Strahlung, um die sehr leistungsfähige Technik der Photoelektronenspektroskopie weiterzuentwickeln. Bei dieser Methode sendet ein optischer Laser einen ultrakurzen Lichtpuls aus, der Elektronen in festen Materialien anregt. Ein zweiter zeitversetzter Röntgenpuls schlägt die sogenannten Photoelektronen aus dem Material. Aus ihrer gemessenen Geschwindigkeit lässt sich dann zum Beispiel die Energie und die Dynamik der Elektronen im Festkörper bestimmen.
Bisher war das nur mit ultravioletter oder weicher Röntgenstrahlung möglich, so dass insbesondere die tief im Inneren und stark an die Atome des Festkörpers gebundenen Elektronen nicht zugänglich waren. Diese geben aber gerade Auskunft über die chemische Zusammensetzung von Materialien oder helfen bei der Bestimmung von magnetischen Eigenschaften. "Mit unserer Technik, die hartes Röntgenlicht einsetzt, können wir bis zu zehn Mal tiefer in Festkörper hineinsehen und schnellere Abläufe beobachten als zuvor", sagt Rossnagel. Auf der Suche nach neuartigen Materialien und schnelleren Bauelementen bringe die neue Analysemethode die Forschenden einen großen Schritt weiter. In den kommenden Jahren wollen Rossnagel und seine Mitarbeitenden diese am zurzeit noch im Bau befindlichen Röntgen-Freie-Elektronen-Laser in Hamburg, der dann neue Maßstäbe setzen wird, weiter verfeinern.
Originalpublikation:
Time-resolved HAXPES at SACLA: probe and pump pulse-induced space-charge effects. Lars-Philip Oloff, Masaki Oura, Kai Rossnagel, Ashish Chainani, Masaharu Matsunami, Ritsuko Eguchi, Takayuki Kiss, Yasuhiro Nakatani, Takashi Yamaguchi, Jun Miyawaki, Munetaka Taguchi, Kohei Yamagami, Tadashi Togashi, Tetsuo Katayama, Kanade Ogawa, Makina Yabashi, and Tetsuya Ishikawa. New Journal of Physics 16, 123045 (2014). doi: 10.1088/1367-2630/16/12/123045
Christian-Albrechts-Universität zu Kiel
Christian-Albrechts-Platz 4
24118 Kiel
Telefon: +49 (0431) 880-00
Telefax: +49 (0431) 880-2072
Mail: mail@uni-kiel.de
URL: http://www.uni-kiel.de/
Weitere Informationen
Christian-Albrechts-Universität zu Kiel,
, 24118 Kiel, Deutschland
Tel.: +49 (0431) 880-00; http://www.uni-kiel.de/
, 24118 Kiel, Deutschland
Tel.: +49 (0431) 880-00; http://www.uni-kiel.de/
Weitere Meldungen dieses Unternehmens
18.12.2014 Was passiert in 100 Billiardstel Sekunden?
03.09.2014 Herrschaftssitze der Vormodernde
22.08.2014 Mehr Zucker aus der Rübe holen
12.08.2014 Wie Spinnen ihre Netze verkleben
Pressefach abonnieren
via RSS-Feed abonnieren
via E-Mail abonnieren
Pressekontakt
Christian-Albrechts-Universität zu Kiel
24118 Kiel
Deutschland
Drucken
Weiterempfehlen
PDF
Schlagworte
Christian-Albrechts-Universität zu Kiel
24118 Kiel
Deutschland
https://www.prmaximus.de/pressefach/christian-albrechts-universität-zu-kiel-pressefach.html
Die Pressemeldung "Was passiert in 100 Billiardstel Sekunden?" unterliegt dem Urheberrecht.
Jegliche Verwendung dieses Textes, auch auszugsweise, erfordert die vorherige schriftliche Erlaubnis des Autors.
Autor der Pressemeldung "Was passiert in 100 Billiardstel Sekunden?" ist Christian-Albrechts-Universität zu Kiel, vertreten durch .