17.02.2014 10:26 Uhr in Wirtschaft & Finanzen von Forschungszentrum Jülich GmbH
Laser-Beschleuniger: Erste Messergebnisse zur Polarisation des Kernspins veröffentlicht
Kurzfassung: Laser-Beschleuniger: Erste Messergebnisse zur Polarisation des Kernspins veröffentlichtTeilchenbeschleuniger sind ein unverzichtbares Werkzeug in vielen Feldern der Naturwissenschaften und Medizin. S ...
[Forschungszentrum Jülich GmbH - 17.02.2014] Laser-Beschleuniger: Erste Messergebnisse zur Polarisation des Kernspins veröffentlicht
Teilchenbeschleuniger sind ein unverzichtbares Werkzeug in vielen Feldern der Naturwissenschaften und Medizin. Sie geben Aufschluss über die Struktur und Eigenschaften der Materie. Zu medizinischen Zwecken eingesetzt helfen sie, Tumore zu entfernen und Kontrastmittel für bildgebende Verfahren zu gewinnen. Die hochenergetischen Teilchen, die benötigt werden, lassen sich mit herkömmlichen Beschleunigern allerdings nur mit hohem Aufwand gewinnen. Die Maschinen sind sehr komplexe, große und kostspielige Einrichtungen. Entsprechende Anlagen sind daher nur eingeschränkt verfügbar.
Beschleuniger, die mit Laserpulsen höchster Intensität arbeiten, können Teilchen dagegen schon in gewöhnlichen Laborräumen auf die notwendigen Geschwindigkeiten bringen - bei entsprechend geringerem Aufwand für Anschaffung und Betrieb. Die erste Generation dieser neuen Beschleunigertechnologie befindet sich seit einigen Jahren im Einsatz und wird seitdem für verschiedene neue Anwendungsfelder weiterentwickelt.
Neue Messmethode entwickelt
Die Arbeitsgruppe von Prof. Markus Büscher arbeitet daran, diese sogenannten Laser-Plasma-Beschleuniger für klassische Physikexperimente einzusetzen. "Wir haben eine Methode entwickelt, die es erstmals ermöglicht, die Polarisation der Teilchen an Laser-Beschleunigern zu messen. Dabei hat sich gezeigt, dass der sogenannte Spin oder Eigendrehimpuls der Protonen nicht durch die starken elektromagnetischen Felder ausgerichtet wird, die innerhalb des vom Laser erzeugten Plasmas vorherrschen", erklärt der am Jülicher Peter Grünberg Institut sowie an der Düsseldorfer Universität tätige Physiker. Damit ist eine wichtige Voraussetzung erfüllt, um Laser zur Beschleunigung polarisierter Teilchen einzusetzen. Ob dies tatsächlich funktioniert, soll sich im Laufe des Jahres zeigen.
Die zugrundeliegenden Streuexperimente haben die Wissenschaftler an der Universität Düsseldorf durchgeführt und anschließend mit Ergebnissen verglichen, die mit konventionellen Teilchenbeschleunigern gewonnen wurden. Der Arcturus-Laser, der bei den Versuchen zum Einsatz kam, liefert hochintensive Terawatt-Pulse. Mit ihm werden Teilchen auf einige MeV beschleunigt. "Um die Intensität im Fokus mit gewöhnlichem Licht zu erzielen, müsste man das gesamte Licht, das von der Sonne auf die Erde fällt, auf eine Bleistiftspitze bündeln", verdeutlicht Prof. Oswald Willi vom Düsseldorfer Institut für Laser- und Plasmaphysik. "Ein Laserpuls ist dafür aber auch nur extrem kurz und dauert nicht viel länger als eine Billiardstel Sekunde."
Neue Option für die Fusion
Die gemessene Polarisation beschreibt die Ausrichtung der Spins. Normalerweise zeigen die Spins von Atomen, Atomkernen und Elektronen statistisch gleichmäßig in alle Richtungen. Sind die Spins dagegen gleich ausgerichtet, spricht man von einem polarisierten Teilchenstrahl. Dessen Eigenschaften bieten mehrere Vorteile. Die Polarisation reduziert die Anzahl der Freiheitsgrade bei kernphysikalischen Experimenten. Das erhöht die Aussagekraft der gemessenen Werte. Und es kann die Wahrscheinlichkeit - den sogenannten Wirkungsquerschnitt -, dass eine Reaktion zwischen zwei aufeinander treffenden Teilchen, stattfindet erhöhen.
"Aus der Vergrößerung des Wirkungsquerschnitts können sich völlig neue Anwendungsmöglichkeiten ergeben", erläutert Markus Büscher. "Insbesondere die Energieausbeute von Fusionsreaktoren, zum Beispiel vom ITER-Typ, ließe sich mit polarisierten Teilchen um ein Vielfaches steigern." Die Entwicklung von Fusionsreaktoren zielt darauf ab, aus der Verschmelzung von Atomkernen Energie zu gewinnen. Ähnliche Prozesse finden auch im Innern der Sonne statt. Wenn es gelingt, sie eines Tages auf der Erde zu kontrollieren, kann die Fusion praktisch unerschöpfliche Mengen an sicherer und günstiger Energie liefern.
So funktioniert ein Laserbeschleuniger:
Zur Erzeugung des Teilchenstrahls schießt ein Laser auf eine dünne Folie. Die hohe Energie führt dazu, dass sich die Elektronen beim Auftreffen des Laserpulses von den Atomkernen lösen. Zwischen den positiv geladenen Atomrümpfen und der dahinter liegenden, negativ geladenen Elektronenwolke bildet sich ein elektromagnetisches Feld aus. Dieses Feld ist etwa eine Million Mal stärker als das konventioneller Teilchenbeschleuniger und daher in der Lage, die Atomkerne auf kürzester Distanz zu beschleunigen.
Animation zur Funktionsweise eines Laserbeschleunigers: http://www.fz-juelich.de/ias/jsc/EN/AboutUs/Organisation/ComputationalScience/Simlabs/slpp/SoftwarePEPC/proton_foil.flash_video.html?nn=1036164
Wissenschaftler erforschen mit Simulationen am Jülich Supercomputing Centre grundlegende Laser-Plasma-Wechselwirkungen. Die Erkenntnisse fließen in die Weiterentwicklung von Laser-Teilchenbeschleunigern ein. Auch die Messwerte der aktuellen Publikation zur Polarisation der Teilchen wurden mit Ergebnissen aus Computersimulationen verglichen.
Zukunftsprojekt JuSPARC:
Die Experimente zur Laser-induzierten Erzeugung polarisierter Strahlen sind auch ein wichtiger Schritt für die am Forschungszentrum geplante Kurzpulslaser-Anlage JuSPARC. Diese wird insbesondere für Versuche mit hoher Repetitionsrate - also einer hohen Pulsfrequenz - ausgelegt. Neben der Beschleuniger- und Hadronenphysik werden auch angrenzende Bereiche wie die Festkörper- und Energieforschung, die Informationstechnologie und die Strukturbiologie von der Einrichtung profitieren, die im Rahmen der Beschleunigerinitiative "Accelerator Research and Development" der Helmholtz-Gemeinschaft in Jülich errichtet werden soll.
Originalveröffentlichung:
Polarization measurement of laser-accelerated protons
Natascha Raab, Markus Büscher, Mirela Cerchez, Ralf Engels, llhan Engin, Paul Gibbon, Patrick Greven, Astrid Holler, Anupam Karmakar, Andreas Lehrach, Rudolf Maier, Marco Swantusch, Monika Toncian, Toma Toncian and Oswald Willi
Phys. Plasmas 21 , 023104 (2014) ; http://dx.doi.org/10.1063/1.4865096
Weitere Informationen:
Peter Grünberg Institut, Elektronische Eigenschaften (PGI-6): http://www.fz-juelich.de/pgi/pgi-6
Laser- und Plasmaphysik der Heinrich Heine Universität Düsseldorf: http://www.laserphy.uni-duesseldorf.de/index_ger.html
Kontakt:
Prof. Dr. Markus Büscher, Peter Grünberg Institut, Elektronische Eigenschaften (PGI-6)
Tel. 02461 61-6669
m.buescher@fz-juelich.de
Teilchenbeschleuniger sind ein unverzichtbares Werkzeug in vielen Feldern der Naturwissenschaften und Medizin. Sie geben Aufschluss über die Struktur und Eigenschaften der Materie. Zu medizinischen Zwecken eingesetzt helfen sie, Tumore zu entfernen und Kontrastmittel für bildgebende Verfahren zu gewinnen. Die hochenergetischen Teilchen, die benötigt werden, lassen sich mit herkömmlichen Beschleunigern allerdings nur mit hohem Aufwand gewinnen. Die Maschinen sind sehr komplexe, große und kostspielige Einrichtungen. Entsprechende Anlagen sind daher nur eingeschränkt verfügbar.
Beschleuniger, die mit Laserpulsen höchster Intensität arbeiten, können Teilchen dagegen schon in gewöhnlichen Laborräumen auf die notwendigen Geschwindigkeiten bringen - bei entsprechend geringerem Aufwand für Anschaffung und Betrieb. Die erste Generation dieser neuen Beschleunigertechnologie befindet sich seit einigen Jahren im Einsatz und wird seitdem für verschiedene neue Anwendungsfelder weiterentwickelt.
Neue Messmethode entwickelt
Die Arbeitsgruppe von Prof. Markus Büscher arbeitet daran, diese sogenannten Laser-Plasma-Beschleuniger für klassische Physikexperimente einzusetzen. "Wir haben eine Methode entwickelt, die es erstmals ermöglicht, die Polarisation der Teilchen an Laser-Beschleunigern zu messen. Dabei hat sich gezeigt, dass der sogenannte Spin oder Eigendrehimpuls der Protonen nicht durch die starken elektromagnetischen Felder ausgerichtet wird, die innerhalb des vom Laser erzeugten Plasmas vorherrschen", erklärt der am Jülicher Peter Grünberg Institut sowie an der Düsseldorfer Universität tätige Physiker. Damit ist eine wichtige Voraussetzung erfüllt, um Laser zur Beschleunigung polarisierter Teilchen einzusetzen. Ob dies tatsächlich funktioniert, soll sich im Laufe des Jahres zeigen.
Die zugrundeliegenden Streuexperimente haben die Wissenschaftler an der Universität Düsseldorf durchgeführt und anschließend mit Ergebnissen verglichen, die mit konventionellen Teilchenbeschleunigern gewonnen wurden. Der Arcturus-Laser, der bei den Versuchen zum Einsatz kam, liefert hochintensive Terawatt-Pulse. Mit ihm werden Teilchen auf einige MeV beschleunigt. "Um die Intensität im Fokus mit gewöhnlichem Licht zu erzielen, müsste man das gesamte Licht, das von der Sonne auf die Erde fällt, auf eine Bleistiftspitze bündeln", verdeutlicht Prof. Oswald Willi vom Düsseldorfer Institut für Laser- und Plasmaphysik. "Ein Laserpuls ist dafür aber auch nur extrem kurz und dauert nicht viel länger als eine Billiardstel Sekunde."
Neue Option für die Fusion
Die gemessene Polarisation beschreibt die Ausrichtung der Spins. Normalerweise zeigen die Spins von Atomen, Atomkernen und Elektronen statistisch gleichmäßig in alle Richtungen. Sind die Spins dagegen gleich ausgerichtet, spricht man von einem polarisierten Teilchenstrahl. Dessen Eigenschaften bieten mehrere Vorteile. Die Polarisation reduziert die Anzahl der Freiheitsgrade bei kernphysikalischen Experimenten. Das erhöht die Aussagekraft der gemessenen Werte. Und es kann die Wahrscheinlichkeit - den sogenannten Wirkungsquerschnitt -, dass eine Reaktion zwischen zwei aufeinander treffenden Teilchen, stattfindet erhöhen.
"Aus der Vergrößerung des Wirkungsquerschnitts können sich völlig neue Anwendungsmöglichkeiten ergeben", erläutert Markus Büscher. "Insbesondere die Energieausbeute von Fusionsreaktoren, zum Beispiel vom ITER-Typ, ließe sich mit polarisierten Teilchen um ein Vielfaches steigern." Die Entwicklung von Fusionsreaktoren zielt darauf ab, aus der Verschmelzung von Atomkernen Energie zu gewinnen. Ähnliche Prozesse finden auch im Innern der Sonne statt. Wenn es gelingt, sie eines Tages auf der Erde zu kontrollieren, kann die Fusion praktisch unerschöpfliche Mengen an sicherer und günstiger Energie liefern.
So funktioniert ein Laserbeschleuniger:
Zur Erzeugung des Teilchenstrahls schießt ein Laser auf eine dünne Folie. Die hohe Energie führt dazu, dass sich die Elektronen beim Auftreffen des Laserpulses von den Atomkernen lösen. Zwischen den positiv geladenen Atomrümpfen und der dahinter liegenden, negativ geladenen Elektronenwolke bildet sich ein elektromagnetisches Feld aus. Dieses Feld ist etwa eine Million Mal stärker als das konventioneller Teilchenbeschleuniger und daher in der Lage, die Atomkerne auf kürzester Distanz zu beschleunigen.
Animation zur Funktionsweise eines Laserbeschleunigers: http://www.fz-juelich.de/ias/jsc/EN/AboutUs/Organisation/ComputationalScience/Simlabs/slpp/SoftwarePEPC/proton_foil.flash_video.html?nn=1036164
Wissenschaftler erforschen mit Simulationen am Jülich Supercomputing Centre grundlegende Laser-Plasma-Wechselwirkungen. Die Erkenntnisse fließen in die Weiterentwicklung von Laser-Teilchenbeschleunigern ein. Auch die Messwerte der aktuellen Publikation zur Polarisation der Teilchen wurden mit Ergebnissen aus Computersimulationen verglichen.
Zukunftsprojekt JuSPARC:
Die Experimente zur Laser-induzierten Erzeugung polarisierter Strahlen sind auch ein wichtiger Schritt für die am Forschungszentrum geplante Kurzpulslaser-Anlage JuSPARC. Diese wird insbesondere für Versuche mit hoher Repetitionsrate - also einer hohen Pulsfrequenz - ausgelegt. Neben der Beschleuniger- und Hadronenphysik werden auch angrenzende Bereiche wie die Festkörper- und Energieforschung, die Informationstechnologie und die Strukturbiologie von der Einrichtung profitieren, die im Rahmen der Beschleunigerinitiative "Accelerator Research and Development" der Helmholtz-Gemeinschaft in Jülich errichtet werden soll.
Originalveröffentlichung:
Polarization measurement of laser-accelerated protons
Natascha Raab, Markus Büscher, Mirela Cerchez, Ralf Engels, llhan Engin, Paul Gibbon, Patrick Greven, Astrid Holler, Anupam Karmakar, Andreas Lehrach, Rudolf Maier, Marco Swantusch, Monika Toncian, Toma Toncian and Oswald Willi
Phys. Plasmas 21 , 023104 (2014) ; http://dx.doi.org/10.1063/1.4865096
Weitere Informationen:
Peter Grünberg Institut, Elektronische Eigenschaften (PGI-6): http://www.fz-juelich.de/pgi/pgi-6
Laser- und Plasmaphysik der Heinrich Heine Universität Düsseldorf: http://www.laserphy.uni-duesseldorf.de/index_ger.html
Kontakt:
Prof. Dr. Markus Büscher, Peter Grünberg Institut, Elektronische Eigenschaften (PGI-6)
Tel. 02461 61-6669
m.buescher@fz-juelich.de
Weitere Informationen
Weitere Meldungen dieses Unternehmens
05.09.2014 Startschuss für Alzheimer-Projekt
15.08.2014 Neue Solarzelle aus flüssigem Silizium
Pressefach abonnieren
via RSS-Feed abonnieren
via E-Mail abonnieren
Pressekontakt
Forschungszentrum Jülich GmbH
52425 Jülich
Deutschland
Drucken
Weiterempfehlen
PDF
Schlagworte
Forschungszentrum Jülich GmbH
52425 Jülich
Deutschland
https://www.prmaximus.de/pressefach/forschungszentrum-jülich-gmbh-pressefach.html
Die Pressemeldung "Laser-Beschleuniger: Erste Messergebnisse zur Polarisation des Kernspins veröffentlicht" unterliegt dem Urheberrecht.
Jegliche Verwendung dieses Textes, auch auszugsweise, erfordert die vorherige schriftliche Erlaubnis des Autors.
Autor der Pressemeldung "Laser-Beschleuniger: Erste Messergebnisse zur Polarisation des Kernspins veröffentlicht" ist Forschungszentrum Jülich GmbH, vertreten durch .