18.02.2014 13:12 Uhr in Energie & Umwelt von Ruhr-Universität Bochum
Feste Flüssigkeiten
Kurzfassung: Feste FlüssigkeitenAusgangsfrageFlüssigkeiten reagieren sensibel auf Wärme oder Kälte. Je nach Art der Temperaturänderung steigt oder fällt der gefärbte Alkoholfaden im Thermometer. Hundertmal ...
[Ruhr-Universität Bochum - 18.02.2014] Feste Flüssigkeiten
Ausgangsfrage
Flüssigkeiten reagieren sensibel auf Wärme oder Kälte. Je nach Art der Temperaturänderung steigt oder fällt der gefärbte Alkoholfaden im Thermometer. Hundertmal weniger empfindlich sind dagegen feste Stoffe, Beton oder Stahl zum Beispiel. Dennoch kommt kein Bauwerk ohne Dehnungsfugen aus. Besonders ungewöhnlich verhält sich Wasser, denn es dehnt sich beim Gefrieren aus. Eis schwimmt, Seen frieren von der Oberfläche her zu, und bei 4 C hat Wasser seine größte Dichte. Kann es feste Stoffe geben, die sich wie Flüssiges verhalten, wenn ihnen heiß oder kalt wird? Und wenn das möglich wäre, was könnte man damit anfangen?
Extreme thermische Expansion
Die Forscher aus Bochum und Cambridge haben einen Trick angewandt, um die thermische Expansionsfähigkeit von sogenannten Metal-Organischen Netzwerken gezielt zu erhöhen. An den geordneten, organischen Baueinheiten des festen Rahmenwerkes wurden zusätzliche Molekülgruppen angebracht. Diese füllen die nanometer-großen Porenräume des Netzwerks teilweise aus. Die Gruppen verhalten sie sich wie eine ungeordnete Flüssigkeit, aber sie können wegen der Bindung an die Porenwände den Raum nicht verlassen. So überträgt sich ihre Wärmebewegung auf das Netzwerk. Beim Erwärmen bläht sich das feste Material schlagartig um ca. 20% auf. Jedoch bleibt seine kristalline Eigenschaft erhalten. Der Vorgang ist vollständig umkehrbar. Temperaturabhängige Röntgenbeugung und kalorimetrische Messungen ergaben extrem große thermische Expansionskoeffizienten, wie man sie bisher nur von Flüssigkeiten kannte, nicht aber von Feststoffen. Die Art der Seitengruppen hat großen Einfluss auf den Effekt. So spielen Länge und chemischer Charakter die entscheidende Rolle. Durch die gezielte Synthese von "Festen Lösungen", die verschiedene Seitenketten in zufälliger Verteilung und beliebigen Verhältnissen im Netzwerk vereinen, können thermischen Eigenschaften der Materialien noch genauer kontrolliert werden. Die Erkenntnisse legen Grundlagen für Anwendungen in der Wärmespeicherung und -übertragung sowie der Sensorik.
Flexible Netzwerke
Metall-Organische Netzwerke (kurz MOFs, aus dem Englischen: Metal-Organic Frameworks) sind hochgeordnete (kristalline) Festkörper mit einer dreidimensionalen Netzwerkstruktur. Sie sind aufgebaut aus Metallionen (Knotenpunkte) und verknüpfenden organischen Molekülen (Verbinder; engl. Linker). Die Materialien zeichnen sich durch unvergleichlich hohe Porenvolumina und innere Oberflächen aus. Sie besitzen großes Potenzial für Anwendungen in der Brennstoffspeicherung, bei der Kohlenstoffdioxid-Abtrennung sowie bei der Katalyse. MOFs können flexibel sein und auf äußere Einflüsse mit strukturellen Änderungen reagieren. Bei Aufnahme von Gastmolekülen (z. B. Lösungsmittel oder Gase) "blähen" die flexiblen MOFs ihre Struktur auf; das erhöht das Speichervermögen.
Projektförderung
Die Fördermittel für die Arbeiten stammen von der Deutsche Forschungsgemeinschaft (SPP 1362 "Metal-Organic Frameworks", EXC 1069 Exzellenzcluster "Ruhr Explores Solvation"), dem European Research Council, der Ruhr-University Research School und der Fonds der Chemischen Industrie.
Titelaufnahme
S. Henke, A. Schneemann, R. A. Fischer (2013): Massive Anisotropic Thermal Expansion and Thermoreponsive Breathing in Metal-Organic Frameworks Modulated by Linker Functionalization, Advanced Functional Materials, 23, 5990-5996; DOI: 10.1002/adfm.201301256
Weitere Informationen
Prof. Dr. Roland A. Fischer, Lehrstuhl für Anorganische Chemie II - Organometallics
Materials Chemistry, Fakultät für Chemie und Biochemie der RUB, Tel. 0234-3224174
roland.fischer@rub.de
Ausgangsfrage
Flüssigkeiten reagieren sensibel auf Wärme oder Kälte. Je nach Art der Temperaturänderung steigt oder fällt der gefärbte Alkoholfaden im Thermometer. Hundertmal weniger empfindlich sind dagegen feste Stoffe, Beton oder Stahl zum Beispiel. Dennoch kommt kein Bauwerk ohne Dehnungsfugen aus. Besonders ungewöhnlich verhält sich Wasser, denn es dehnt sich beim Gefrieren aus. Eis schwimmt, Seen frieren von der Oberfläche her zu, und bei 4 C hat Wasser seine größte Dichte. Kann es feste Stoffe geben, die sich wie Flüssiges verhalten, wenn ihnen heiß oder kalt wird? Und wenn das möglich wäre, was könnte man damit anfangen?
Extreme thermische Expansion
Die Forscher aus Bochum und Cambridge haben einen Trick angewandt, um die thermische Expansionsfähigkeit von sogenannten Metal-Organischen Netzwerken gezielt zu erhöhen. An den geordneten, organischen Baueinheiten des festen Rahmenwerkes wurden zusätzliche Molekülgruppen angebracht. Diese füllen die nanometer-großen Porenräume des Netzwerks teilweise aus. Die Gruppen verhalten sie sich wie eine ungeordnete Flüssigkeit, aber sie können wegen der Bindung an die Porenwände den Raum nicht verlassen. So überträgt sich ihre Wärmebewegung auf das Netzwerk. Beim Erwärmen bläht sich das feste Material schlagartig um ca. 20% auf. Jedoch bleibt seine kristalline Eigenschaft erhalten. Der Vorgang ist vollständig umkehrbar. Temperaturabhängige Röntgenbeugung und kalorimetrische Messungen ergaben extrem große thermische Expansionskoeffizienten, wie man sie bisher nur von Flüssigkeiten kannte, nicht aber von Feststoffen. Die Art der Seitengruppen hat großen Einfluss auf den Effekt. So spielen Länge und chemischer Charakter die entscheidende Rolle. Durch die gezielte Synthese von "Festen Lösungen", die verschiedene Seitenketten in zufälliger Verteilung und beliebigen Verhältnissen im Netzwerk vereinen, können thermischen Eigenschaften der Materialien noch genauer kontrolliert werden. Die Erkenntnisse legen Grundlagen für Anwendungen in der Wärmespeicherung und -übertragung sowie der Sensorik.
Flexible Netzwerke
Metall-Organische Netzwerke (kurz MOFs, aus dem Englischen: Metal-Organic Frameworks) sind hochgeordnete (kristalline) Festkörper mit einer dreidimensionalen Netzwerkstruktur. Sie sind aufgebaut aus Metallionen (Knotenpunkte) und verknüpfenden organischen Molekülen (Verbinder; engl. Linker). Die Materialien zeichnen sich durch unvergleichlich hohe Porenvolumina und innere Oberflächen aus. Sie besitzen großes Potenzial für Anwendungen in der Brennstoffspeicherung, bei der Kohlenstoffdioxid-Abtrennung sowie bei der Katalyse. MOFs können flexibel sein und auf äußere Einflüsse mit strukturellen Änderungen reagieren. Bei Aufnahme von Gastmolekülen (z. B. Lösungsmittel oder Gase) "blähen" die flexiblen MOFs ihre Struktur auf; das erhöht das Speichervermögen.
Projektförderung
Die Fördermittel für die Arbeiten stammen von der Deutsche Forschungsgemeinschaft (SPP 1362 "Metal-Organic Frameworks", EXC 1069 Exzellenzcluster "Ruhr Explores Solvation"), dem European Research Council, der Ruhr-University Research School und der Fonds der Chemischen Industrie.
Titelaufnahme
S. Henke, A. Schneemann, R. A. Fischer (2013): Massive Anisotropic Thermal Expansion and Thermoreponsive Breathing in Metal-Organic Frameworks Modulated by Linker Functionalization, Advanced Functional Materials, 23, 5990-5996; DOI: 10.1002/adfm.201301256
Weitere Informationen
Prof. Dr. Roland A. Fischer, Lehrstuhl für Anorganische Chemie II - Organometallics
Materials Chemistry, Fakultät für Chemie und Biochemie der RUB, Tel. 0234-3224174
roland.fischer@rub.de
Weitere Informationen
Weitere Meldungen dieses Unternehmens
23.09.2014 Gutes Körperbild - weniger Rückenschmerz
Pressefach abonnieren
via RSS-Feed abonnieren
via E-Mail abonnieren
Pressekontakt
Ruhr-Universität Bochum
44780 Bochum
Deutschland
Drucken
Weiterempfehlen
PDF
Schlagworte
Ruhr-Universität Bochum
44780 Bochum
Deutschland
https://www.prmaximus.de/pressefach/ruhr-universität-bochum-pressefach.html
Die Pressemeldung "Feste Flüssigkeiten" unterliegt dem Urheberrecht.
Jegliche Verwendung dieses Textes, auch auszugsweise, erfordert die vorherige schriftliche Erlaubnis des Autors.
Autor der Pressemeldung "Feste Flüssigkeiten" ist Ruhr-Universität Bochum, vertreten durch .