20.05.2014 09:36 Uhr in Gesundheit & Wellness von Ludwig-Maximilians-Universität München
Stammzellen-Forschung: Neuer Schalter im Erbgut gefunden
Kurzfassung: Stammzellen-Forschung: Neuer Schalter im Erbgut gefundenJede Zelle enthält alle in der DNA festgelegten Erbinformationen, aber meistens ist nur ein Bruchteil davon in Gebrauch. Welche Gene aktiv sind ...
[Ludwig-Maximilians-Universität München - 20.05.2014] Stammzellen-Forschung: Neuer Schalter im Erbgut gefunden
Jede Zelle enthält alle in der DNA festgelegten Erbinformationen, aber meistens ist nur ein Bruchteil davon in Gebrauch. Welche Gene aktiv sind und welche abgeschaltet werden, entscheidet eine zweite Informationsebene, die über die bloße Abfolge der DNA-Bausteine - der Nukleinbasen - hinausgeht: Auf dieser epigenetischen Ebene wird die DNA durch chemische Modifikationen verändert. Dadurch wird die Genaktivität reguliert und die Ausbildung spezifischer zellulärer Funktionen ermöglicht.
Auch für die Differenzierung von Stammzellen spielen DNA-Modifikationen eine wichtige Rolle: "Im Genom von Stammzellen wurden mehrere neue DNA-Basen gefunden, die aus chemischen Modifikationen der bekannten DNA-Bausteine hervorgehen und von denen angenommen wird, dass sie für die Entscheidung wichtig sind, in welchen Zelltyp sich die Stammzelle verwandelt", sagt Professor Thomas Carell vom Department Chemie der LMU. Alle bisher entdeckten neuen Basen beruhen auf Veränderungen der Standard-Base Cytosin. An deren Modifikation sind sogenannte Tet-Enzyme entscheidend beteiligt, wie Carell bereits in der Vergangenheit zeigen konnte.
Oxidation reguliert Genaktivität
Nun konnte Carells Gruppe in Kooperation mit LMU-Kollegen sowie Wissenschaftlern aus Berlin, Basel und Utrecht erstmals nachweisen, dass in embryonalen Stammzellen der Maus auch eine zweite DNA-Base modifiziert vorliegt - und wieder ist Tet beteiligt: "Tet-Enzyme oxidieren im Rahmen der Entwicklung von Stammzellen hin zu spezialisierten Geweben auch die Base Thymidin, wie wir mithilfe hochempfindlicher massenspektrometrischer Methoden nachweisen konnten. Dabei entsteht Hydroxymethyluracil, von dem bisher fälschlicherweise ein anderer Entstehungsweg angenommen wurde", erklärt Carell.
Die genaue Funktion von Hydroxymethyluracil ist bisher unbekannt. Mit einer neuartigen Methode zur Identifikation von Proteinen, die chemische Signale auf der DNA "lesen" können, konnten die Wissenschaftler aber bereits zeigen, dass es spezifische Proteine in der Zelle gibt, die Hydroxymethyluracil erkennen und so zu einer Regulation von Genaktivität beitragen können. "Wir hoffen, dass es mithilfe der neuen Erkenntnisse möglich wird, die Differenzierung von Stammzellen zu beeinflussen - also gezielt bestimmte Zellen entstehen zu lassen", sagt Carell, "ein Traum wäre es, wenn man aus differenzierten Körperzellen eines Tages komplette neue Organe erzeugen könnte".
(Nature Chemical Biology 2014) göd
Publikation:
Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA
Toni Pfaffeneder, Fabio Spada, Mirko Wagner, Caterina Brandmayr, Silvia Laube, David Eisen, Matthias Truss, Jessica Steinbacher, Benjamin Hackner, Olga Kotljarova, David Schuermann, Stylianos Michalakis, Olesea Kosmatchev, Stefan Schiesser, Barbara Steigenberger, Nada Raddaoui, Gengo Kashiwazaki, Udo Müller, Cornelia G Spruijt, Michiel Vermeulen, Heinrich Leonhardt, Primo Schär, Markus Müller
Thomas Carell
Kontakt:
Prof. Dr. Thomas Carell
http://www.carellgroup.de/
Jede Zelle enthält alle in der DNA festgelegten Erbinformationen, aber meistens ist nur ein Bruchteil davon in Gebrauch. Welche Gene aktiv sind und welche abgeschaltet werden, entscheidet eine zweite Informationsebene, die über die bloße Abfolge der DNA-Bausteine - der Nukleinbasen - hinausgeht: Auf dieser epigenetischen Ebene wird die DNA durch chemische Modifikationen verändert. Dadurch wird die Genaktivität reguliert und die Ausbildung spezifischer zellulärer Funktionen ermöglicht.
Auch für die Differenzierung von Stammzellen spielen DNA-Modifikationen eine wichtige Rolle: "Im Genom von Stammzellen wurden mehrere neue DNA-Basen gefunden, die aus chemischen Modifikationen der bekannten DNA-Bausteine hervorgehen und von denen angenommen wird, dass sie für die Entscheidung wichtig sind, in welchen Zelltyp sich die Stammzelle verwandelt", sagt Professor Thomas Carell vom Department Chemie der LMU. Alle bisher entdeckten neuen Basen beruhen auf Veränderungen der Standard-Base Cytosin. An deren Modifikation sind sogenannte Tet-Enzyme entscheidend beteiligt, wie Carell bereits in der Vergangenheit zeigen konnte.
Oxidation reguliert Genaktivität
Nun konnte Carells Gruppe in Kooperation mit LMU-Kollegen sowie Wissenschaftlern aus Berlin, Basel und Utrecht erstmals nachweisen, dass in embryonalen Stammzellen der Maus auch eine zweite DNA-Base modifiziert vorliegt - und wieder ist Tet beteiligt: "Tet-Enzyme oxidieren im Rahmen der Entwicklung von Stammzellen hin zu spezialisierten Geweben auch die Base Thymidin, wie wir mithilfe hochempfindlicher massenspektrometrischer Methoden nachweisen konnten. Dabei entsteht Hydroxymethyluracil, von dem bisher fälschlicherweise ein anderer Entstehungsweg angenommen wurde", erklärt Carell.
Die genaue Funktion von Hydroxymethyluracil ist bisher unbekannt. Mit einer neuartigen Methode zur Identifikation von Proteinen, die chemische Signale auf der DNA "lesen" können, konnten die Wissenschaftler aber bereits zeigen, dass es spezifische Proteine in der Zelle gibt, die Hydroxymethyluracil erkennen und so zu einer Regulation von Genaktivität beitragen können. "Wir hoffen, dass es mithilfe der neuen Erkenntnisse möglich wird, die Differenzierung von Stammzellen zu beeinflussen - also gezielt bestimmte Zellen entstehen zu lassen", sagt Carell, "ein Traum wäre es, wenn man aus differenzierten Körperzellen eines Tages komplette neue Organe erzeugen könnte".
(Nature Chemical Biology 2014) göd
Publikation:
Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA
Toni Pfaffeneder, Fabio Spada, Mirko Wagner, Caterina Brandmayr, Silvia Laube, David Eisen, Matthias Truss, Jessica Steinbacher, Benjamin Hackner, Olga Kotljarova, David Schuermann, Stylianos Michalakis, Olesea Kosmatchev, Stefan Schiesser, Barbara Steigenberger, Nada Raddaoui, Gengo Kashiwazaki, Udo Müller, Cornelia G Spruijt, Michiel Vermeulen, Heinrich Leonhardt, Primo Schär, Markus Müller
Thomas Carell
Kontakt:
Prof. Dr. Thomas Carell
http://www.carellgroup.de/
Weitere Informationen
Weitere Meldungen dieses Unternehmens
10.10.2014 Magnetische Supraleiter: Vereinte Gegensätze
Pressefach abonnieren
via RSS-Feed abonnieren
via E-Mail abonnieren
Pressekontakt
Ludwig-Maximilians-Universität München
80539 München
Deutschland
Drucken
Weiterempfehlen
PDF
Schlagworte
Ludwig-Maximilians-Universität München
80539 München
Deutschland
https://www.prmaximus.de/pressefach/ludwig-maximilians-universität-münchen-pressefach.html
Die Pressemeldung "Stammzellen-Forschung: Neuer Schalter im Erbgut gefunden" unterliegt dem Urheberrecht.
Jegliche Verwendung dieses Textes, auch auszugsweise, erfordert die vorherige schriftliche Erlaubnis des Autors.
Autor der Pressemeldung "Stammzellen-Forschung: Neuer Schalter im Erbgut gefunden" ist Ludwig-Maximilians-Universität München, vertreten durch .