12.09.2014 10:18 Uhr in Kultur & Kunst von Universität Wien

Neues aus der Materialphysik: Einzelne Siliziumatome in Graphen verschoben

Kurzfassung: Neues aus der Materialphysik: Einzelne Siliziumatome in Graphen verschobenBereits 1959 hat der Physiker Richard Feynman die berühmte Frage gestellt, ob es jemals möglich sein wird, einzelne Atome se ...
[Universität Wien - 12.09.2014] Neues aus der Materialphysik: Einzelne Siliziumatome in Graphen verschoben
Bereits 1959 hat der Physiker Richard Feynman die berühmte Frage gestellt, ob es jemals möglich sein wird, einzelne Atome sehen und sogar bewegen zu können. Lange Zeit galt seine Vision eher als Science Fiction, aber Schritt für Schritt wurde diese Vision durch die moderne Mikroskopie zur Realität im wissenschaftlichen Alltag. Bei solchen Untersuchungen können jedoch manchmal Schäden am erforschten Material entstehen.
High-Tech-Mikroskop ermöglichte Forschungserfolg
In der aktuellen Studie wurde Graphen, eine nur ein Atom dicke Lage aus Kohlenstoffatomen, in die einzelne Siliziumatome eigebettet sind, getestet. Die Siliziumatome ragen aufgrund ihres Größenunterschiedes aus der Ebene der Kohlenstoffatome heraus. "Wir kamen mithilfe detaillierter Computersimulationen zum Schluss, dass das Material durch Beschuss mit Elektronen manipuliert werden kann, ohne dieses zu beschädigen. Dafür haben wir eine Beschleunigungsspannung von 60.000 Volt benötigt", so Toma Susi, Erstautor und FWF-Lise-Meitner-Stipendiat an der Universität Wien: "Voraussetzung für diese High-Tech-Experimente ist ein modernes hochauflösendes Ultra-Hochvakuum-Raster-Transmissionselektronenmikroskop, von denen es derzeit weltweit nur etwa zehn gibt. Die Universität Wien verfügt über ein derartiges Gerät, das mit einer Auflösung von weniger als ein Ångström, das ist ein Zehnmillionstel Millimeter, nahezu alle atomaren Abstände auflösen kann. Damit habe ich meine komplexen Untersuchungen durchgeführt." Das Team in Daresbury (UK) arbeitete ebenfalls mit einem solchen Mikroskop.
Vergleich der Messergebnisse mit Computersimulationen
Die Computerberechnungen haben gezeigt, dass Kohlenstoffatome in unmittelbarer Nachbarschaft der Siliziumatome weniger stark gebunden sind als jene Kohlenstoffatome, die weit entfernt von den Siliziumatomen liegen. Dadurch können die ForscherInnen mit dem Elektronenstrahl ein Nachbaratom eines Siliziumatoms nur gerade soweit aus dem Gitter stoßen, dass das Siliziumatom und das Kohlenstoffatom ihre Plätze tauschen. Dieser Platztausch wurde von beiden Forschungsteams direkt im Elektronenmikroskop beobachtet. Durch Analyse von etwa 40 solcher aufgenommenen Prozesse konnten die ForscherInnen herausfinden, dass es sich bei dem Platztausch um einen stochastischen Prozess handelt und dessen Wahrscheinlichkeit bestimmen. Ein direkter Vergleich der Messergebnisse mit den Computersimulationen zeigte eine beeindruckende Übereinstimmung.
Elektronenstrahl steuert Platzwechsel der Siliziumatome
Neben der Bedeutung für die Physik eröffnen diese Ergebnisse sehr vielversprechende Möglichkeiten für die gezielte Erzeugung von Strukturen aus einzelnen Atomen. "Was unsere Ergebnisse wahrlich beeindruckend macht, ist, dass dieser Platzwechselprozess steuerbar ist, da das Siliziumatom immer an die Stelle, die vom Elektronenstrahl getroffen wird, springt", so Toma Susi, Physiker an der Universität Wien. "Das ermöglicht uns, die Bewegung jedes einzelnen Siliziumatoms auf das Genaueste zu steuern. Vielleicht sehen wir bald neue Quantenstrukturen oder das Logo einer Universität - geschrieben aus Siliziumatomen in Graphen."
Publikation in Physical Review Letters:
Silicon-carbon bond inversions driven by 60 keV electrons in graphene: T. Susi, J. Kotakoski, D. Kepaptsoglou, C. Mangler, T.C. Lovejoy, O.L. Krivanek, R. Zan, U. Bangert, P. Ayala, J.C. Meyer
Q. Ramasse. Physical Review Letters, August 2014.
DOI: 10.1103/PhysRevLett.113.115501
Video Animation:
Visualisierung der Silizium-Kohlenstoff-Bindungsinversion
http://youtu.be/44qT1PcqPFI
Video Abstract:
Erstautor Toma Susi erklärt sein Forschungsprojekt
http://youtu.be/WCl7DFVVC-M
Blogeintrag Toma Susi (Mostly physics):
"Moving silicon atoms in graphene with atomic precision"
http://mostlyphysics.wordpress.com/2014/09/11/story-of-another-article/
Wissenschaftlicher Kontakt
Dr. Toma Susi
Tailored Hybrid Structures
Elektronische Materialeigenschaften
Fakultät für Physik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-726 14
M +43-664-527 3054
toma.susi@univie.ac.at
Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit auch die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. 1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum. www.univie.ac.at

Rückfragehinweis
Mag. Veronika Schallhart
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at
Weitere Informationen
Universität Wien
Die Universität Wien wurde im Jahr 1365 von Herzog Rudolf IV. gegründet. Sie ist die älteste Universität im deutschen Sprachraum und eine der größten Universitäten Zentraleuropas. 2015 feiert die Universität Wien ihr 650 jähriges Jubiläum.
Universität Wien,
, 1010 Wien, Deutschland
Tel.: ;
Weitere Meldungen dieses Unternehmens
Erfolgreiche Pressearbeit eBook
Pressearbeit
Eine Pflichtlektüre für mehr Sichtbarkeit durch Pressemitteilungen.
Pressekontakt

Universität Wien

1010 Wien
Deutschland

E-Mail:
Web:
Tel:
Fax:
Drucken Weiterempfehlen PDF
Schlagworte
Permanentlinks https://www.prmaximus.de/113322

https://www.prmaximus.de/pressefach/universität-wien-pressefach.html
Die Pressemeldung "Neues aus der Materialphysik: Einzelne Siliziumatome in Graphen verschoben" unterliegt dem Urheberrecht. Jegliche Verwendung dieses Textes, auch auszugsweise, erfordert die vorherige schriftliche Erlaubnis des Autors. Autor der Pressemeldung "Neues aus der Materialphysik: Einzelne Siliziumatome in Graphen verschoben" ist Universität Wien, vertreten durch .